103 research outputs found

    Regular Polygonal Complexes of Higher Ranks in E^3

    Full text link
    The paper establishes that the rank of a regular polygonal complex in 3-space E^3 cannot exceed 4, and that the only regular polygonal complexes of rank 4 in 3-space are the eight regular 4-apeirotopes

    Chiral polyhedra in ordinary space, II

    Full text link
    A chiral polyhedron has a geometric symmetry group with two orbits on the flags, such that adjacent flags are in distinct orbits. Part I of the paper described the discrete chiral polyhedra in ordinary Euclidean 3-space with finite skew faces and finite skew vertex-figures; they occur in infinite families and are of types {4,6}, {6,4} and {6,6}. Part II completes the enumeration of all discrete chiral polyhedra in 3-space. There exist several families of chiral polyhedra with infinite, helical faces. In particular, there are no discrete chiral polyhedra with finite faces in addition to those described in Part I.Comment: 48 page

    Combinatorial Space Tiling

    Full text link
    The present article studies combinatorial tilings of Euclidean or spherical spaces by polytopes, serving two main purposes: first, to survey some of the main developments in combinatorial space tiling; and second, to highlight some new and some old open problems in this area.Comment: 16 pages; to appear in "Symmetry: Culture and Science

    Polyhedra, Complexes, Nets and Symmetry

    Full text link
    Skeletal polyhedra and polygonal complexes in ordinary Euclidean 3-space are finite or infinite 3-periodic structures with interesting geometric, combinatorial, and algebraic properties. They can be viewed as finite or infinite 3-periodic graphs (nets) equipped with additional structure imposed by the faces, allowed to be skew, zig-zag, or helical. A polyhedron or complex is "regular" if its geometric symmetry group is transitive on the flags (incident vertex-edge-face triples). There are 48 regular polyhedra (18 finite polyhedra and 30 infinite apeirohedra), as well as 25 regular polygonal complexes, all infinite, which are not polyhedra. Their edge graphs are nets well-known to crystallographers, and we identify them explicitly. There also are 6 infinite families of "chiral" apeirohedra, which have two orbits on the flags such that adjacent flags lie in different orbits.Comment: Acta Crystallographica Section A (to appear

    Reflection Groups and Polytopes over Finite Fields, III

    Get PDF
    When the standard representation of a crystallographic Coxeter group is reduced modulo an odd prime p, one obtains a finite group G^p acting on some orthogonal space over Z_p . If the Coxeter group has a string diagram, then G^p will often be the automorphism group of a finite abstract regular polytope. In parts I and II we established the basics of this construction and enumerated the polytopes associated to groups of rank at most 4, as well as all groups of spherical or Euclidean type. Here we extend the range of our earlier criteria for the polytopality of G^p . Building on this we investigate the class of 3-infinity groups of general rank, and then complete a survey of those locally toroidal polytopes which can be described by our construction.Comment: Advances in Applied Mathematics (to appear); 19 page

    Reflection groups and polytopes over finite fields, II

    Full text link
    When the standard representation of a crystallographic Coxeter group Γ\Gamma is reduced modulo an odd prime pp, a finite representation in some orthogonal space over Zp\mathbb{Z}_p is obtained. If Γ\Gamma has a string diagram, the latter group will often be the automorphism group of a finite regular polytope. In Part I we described the basics of this construction and enumerated the polytopes associated with the groups of rank 3 and the groups of spherical or Euclidean type. In this paper, we investigate such families of polytopes for more general choices of Γ\Gamma, including all groups of rank 4. In particular, we study in depth the interplay between their geometric properties and the algebraic structure of the corresponding finite orthogonal group.Comment: 30 pages (Advances in Applied Mathematics, to appear

    Polygonal Complexes and Graphs for Crystallographic Groups

    Full text link
    The paper surveys highlights of the ongoing program to classify discrete polyhedral structures in Euclidean 3-space by distinguished transitivity properties of their symmetry groups, focussing in particular on various aspects of the classification of regular polygonal complexes, chiral polyhedra, and more generally, two-orbit polyhedra.Comment: 21 pages; In: Symmetry and Rigidity, (eds. R.Connelly, A.Ivic Weiss and W.Whiteley), Fields Institute Communications, to appea
    • …
    corecore